

Workshop on methods and models for the preparation of GHG emissions projections up to 2050

Electrical generation expansion planning tool

by Z. Košnjek,

Ljubljana, Sep. 21

THE PURPOSE AND USE OF MODEL

- The model is used for expansion planning for electrical generating system on mid and long term,
- It is adjusted to be used for small and specific electric generating system like Slovenian system is,
- ELEK started to develop the model in 2005 and it was several times updated
- Model uses Windows platform,
- Written is in Python programming language and
- communicates with I/O data through Excel environment,
- Model communicates (data exchange) with other models created in IJS platform.

WHAT HAS BEEN DONE WITHIN LIFE PROJECT

Through LIFE project, the following upgrades of the model have been realized

- new hourly electric demand curves were applied based on year 2017,
- updating of all data (technical, economic and environmental) concerning existing and new power plants, (hydroelectric, nuclear, thermal and pumped hydro storage) were done,
- Extension of hydrological data with impact of climate change on hydrological conditions was done,
- A new interface into the model for hourly bulky wind and photovoltaic power plants operation was applied,
- A wholesale market electricity price analysis was done and used for price driving unit commitment,
- Etc.
- The model was tested,
- Different scenarios were calculated,

BASIC CHARACTERISTIC OF THE MODEL

- The model is used for expansion planning for Electrical generating system, specially adopted for slovenian EPS,
- Model is based on generating unit scheduling considering the technical, economic and environmental constraints.
- The basic time step of the calculation is one hour, a whole year is based on 864 hours (12 months x 3 days x 24 hours)
- It solves the following problems on mid and long term:
 - Economic dispatch,
 - Unit commitment,
 - Generation expansion planning,
 - Generating system reliability adequacy
- Model is probability based orientated on Monte Carlo simulation,
- It deals with the following generation technologies:
 - Hydro, wind, thermal (coal, gas, biomass,..) storage, nuclear, photovoltaic, CHP, geothermal, etc.

OUTPUT RESULTS

- A detailed electricity generation data of the unit thought the analyzed time horizon based on the probability simulation are given as the main result.
- General output of a one year simulation consists of:
 - Name of the scenario,
 - Number of Monte Carlo Simulation,
 - Power balance in MW:
 - Electric system peak demand,
 - Installed power of a defined technological generation group (hydro, wind,..)
 - Reliability indexes: LOLE in hours and ENS in MWh
 - Energy balance in GWh:
 - Electricity demand,
 - Electricity generation by each defined unit
 - Electricity from IMPORT,
 - Electricity for EXPORT,
 - Heat balance for system CHP units,
 - Use of primary fuels by particular generation unit,
 - Environmental emissions of CO₂, PM, NOx and SOx.
- All output data are excel based and ready for exchange with other models