Power-to-X as sector integration enabler

YZAVS PERMISI

Iva Ridjan Skov, iva@plan.aau.dk

LOCAL

RRYAWAS

AALBORG UNIVERSITY DENMARK

Solutions on the table

- 1. Interconnectors and trading
- 2. Flexible electricity demands and smart grids
- 3. Integrated efficient Smart Energy Systems

Energy system 0.0

Future energy systems

Smart Energy Systems

Check: www.EnergyPLAN.eu

Smart Energy Systems

EU Energy System Integration Strategy

• From 2012 → 2020

An Integrated EU Energy System will have three main characteristics:

- · A more efficient and "circular" system, where waste energy is captured and re-used
- A cleaner power system, with more direct electrification of end-use sectors such as industry, heating of buildings and transport.
- · A cleaner fuel system, for hard-to-electrify sectors like heavy industry or transport

AALBORG UNIVERSITY DENMARK

The burning platform: PtX enable integration of renewables

To achieve climate neutrality, a 90% reduction in transport emissions is needed by 2050. 67% emissions are from road transport of which 26% is heavy-duty transport.

PtX/electrofuels can optimise the utilisation of our energy production by storing energy from renewable sources and displace the fossil fuels in heavy duty transport.

We have a solution for personal transportation, but we do not have a clear idea how to solve the heavy-duty transport nor it was something that was discussed until recently.

Current barriers: Inhibitors for innovative first-movers

- Regulatory framework inhibits a sound business case.
- Certain effects of electrofuels are yet to be tested in large scale.
- Fuel engines and infrastructure needs to be adjusted to allow a large scale implementation of electrofuels.
- We need to create a competitive renewable fuel market.
- We need to talk about targets for different modes of transport personal, road heavy-duty, marine and aviation.

PtX pathways

The individual technologies more advanced than generally presumed

The concept as an integrated production system remains to be proven on a larger scale.

Storage comparison

How to use storages long term.. (in Smart energy markets)

- Three crucial grids in Smart Energy Systems
 - Smart electricity grids
 - Smart thermal grids
 - Smart gas grids
- Electricity storage in transport (batteries and electrofuels)
- More district heating (and district cooling) with heat storages
- Large heat pumps with high capacity (Power-to-heat 50% operation time)
- CHP, solar thermal, etc.
- High capacity electrolyses (Power-to-gas 50% operation time)
- Production of green gasses and e-fuels
- In and bioenergy on the input side...

Smart energy system grids

WWW.SMARTENERGYSYSTEMS.EU

13

A review of production costs

Current plans for PtX in Europe

DENMARK

- Member states level
 - National Hydrogen Strategies set such targets
 - Some countries mention PtX fuels as an option for aviation and maritime shipping

PtX demonstrators in Europe

0,025

5,200

2.322

Why Denmark is an ideal test-bed and laboratory for large-scale electrolysis

- Use and storage of wind power
- Can test use of intermittent resources and help predict potential problems regarding integration of renewable energy and electricity grid
- Can be connected to district heating to utilise waste heat from fuel production processes
- Plan for 100% renewable energy in 2045 (including transport)
- Research in all three electrolysers types
- Producers of chemical synthesis and electrolysis

HANDLINGSPLAN FOR STORSKALA ANVENDELSE AF ELEKTROLYSE I DANMARK

a

We have already cheapest electricity production..

- Plan for large expansion of off-shore wind
- We can be a fuel production plant for the EU

PtX in Denmark

We need to think beyond 2030 and achieve emission reductions in 2030 that can lift the 100% renewable energy and CO₂ neutrality in 2045

- Choose the technologies before 2030 that can help further reductions in following years
- Focus on development of the new technologies like PtX that do not have a big role in 2030 but will be much needed towards 2045

AALBORG UNIVERSITY DENMARK

IDAs Klimasvar

- Transport- og energiløsninger 2030

IDA's Energy Vision 2050

Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats

- 11 expert interviews in Phase 1
- 28 replies on online survey in Phase 2 (67 invitations sent out)

energies	MDPI
Article Power-to-X in Denmark: An Analysis of	Strengths, Weaknesses,
Opportunities and Threats	

https://doi.org/10.3390/en14040913

	Positive	Negative
	Strengths	Weaknesses
Internal	Sa: P2X improves system flexibility	Wa: P2X lacks cost competitiveness due to electricity price and electrolysis CAPEX
	Sb: P2X enables sector coupling	Wb: P2X lacks upscaling and manufacturing production capacity
	Sc: P2X provides a large spectrum of end-products that are compatible with existing infrastructure and equipment	Wc: P2X technologies have low production efficiency
	Sd: P2X contributes to decarbonize parts of transport sector not suitable for direct electrification	Wd: P2X technologies are immature and have short lifetime (electrolysis)
External	Opportunities	Threats
	Oa: The European Union ambitious climate targets support further expansion of renewable energy.	Ta: Competitive technologies are more visible and economically attractive
	Ob: Consensus on limited biomass availability and the need to minimise its use	Tb: Uncertainty upon fuel market readiness or support schemes.
	Oc: Existing district heating networks can benefit from excess heat from the P2X processes.	Tc: Rising electricity prices
	Od: Denmark is a P2X knowledge hub.	Td: Uncertainty on the climate agenda due to external shocks such as the COVID-19 pandemic

Weaknesses

Threats

0.40

20

Thank you for your attention!

All publications: Iva Ridjan Skov, Associate Professor, Sustainable Energy Planning research group

